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Quantization by Parts, Maximal Symmetric
Operators, and Quantum Circuits
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In the context of a generalized quantum theory which admits maximal symmetric
operators as observables, we discuss a quantization scheme which can
systematically deal with what may be called quantum circuits. The scheme,
known as the method of quantization by parts, has recently been applied to
obtain a new derivation of the Josephson equation for the supercurrent through
a Josephson junction in a superconducting circuit. This paper presents an
application of this scheme to several circuit configurations, namely, from one-
branch to many-branch circuits. We also propose an experimental test on whether
the condensate is always in a pure state, using a three-branch Y-shape circuit.

1. INTRODUCTION

In this paper we present a condensate wave function or quasiparticle

approach to superconducting circuits championed by Feynman (1965, 1972).

We know from BCS theory that the electrons in the ground state forming

the condensate in a superconductor come in pairs (Cooper pairs) with opposite

spin. According to Feynman, each pair of electrons in the condensate can be
treated as a single particle (quasiparticle) of charge q and mass m twice that

of an electron; the condensate can be regarded as consisting of a large number

of these quasiparticles all in the same quantum state (Feynman, 1972). The

quantum state of a quasiparticle is assumed to be describable by a one-

particle wave function c (x) which is normalized to one. We can set up

quantum mechanical observables as operators and the SchroÈ dinger equation
with an appropriate Hamiltonian in the usual fashion. The simplicity of this

approach lies in the fact that we can effectively use this one-particle wave

function to represent the whole condensate by normalizing the wave function
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to the total number of quasiparticles. Then c (x) represents the entire conden-

sate with | c (x) | 2 interpreted as the quasiparticle number density in the conden-

sate. This condensate wave function is often referred to as a macroscopic wave
function (Tilley and Tilley, 1990). As it turns out, the successful application of

this approach does not depend on how c (x) is normalized, i.e., it is just a

matter of convenience how one normalizes c (x).

This paper presents a study of various exactly soluble model supercon-

ducting circuits with a direct (as opposed to an alternating) supercurrent

flowing in them. These models deal with simple but nontrivial systems and
are necessarily idealistic. For example, we would ignore any capacitive effect

in a Josephson junction. The circuits with alternating supercurrents will be

studied in a separate paper. The simplest circuit consists of a branch which

is assumed to be one-dimensional and hence can be idealized mathematically

as a line which could be finite or infinite in length. Generally a quantum

circuit contains branch points. A branch point is where a branch encounters
an abrupt change in its geometry. This could be a point at which a branch

splits into several branches or it could be a branch coming into contact with

a plane or other circuit elements. One of the simplest quantum circuits is a

branch joining up with another branch, but with a thin gap at the joint. Within

classical circuit theory no direct current can flow across such a gap without
involving a voltage across the gap and an electrical breakdown. A quantum

current in the form of a supercurrent is able to flow across the gap by quantum

tunneling without needing a voltage across the gap, a phenomenon now

known as the Josephson effect (Josephson, 1962), showing the difference

between the behavior of quantum circuits and classical circuits.

Recently we introduced a method of quantization by parts to deal with
superconducting circuits (Wan and Fountain, 1996). The idea is to quantize

each branch separately first, and then bring the separately quantized branches

together to arrive at a theory for the whole circuit. Our work is built on

previous studies into quantum wires, notably by Exner et al. (Exner and

Seba, 1987, 1989a, 1989b; Exner et al., 1989; Blank et al., 1994). A circuit

geometry generally does not have a manifold structure, which renders conven-
tional methods of quantization inapplicable. First, there is a need to extend

the set of operators describing observables beyond the orthodox set of self-

adjoint operators. We have argued (Wan et al., 1995) that an observable

should generally be represented by a maximal symmetric operator which

need not necessarily be self-adjoint. This extension of the set of observables

will be seen to be particularly relevant to quantum circuits. Second, one often
encounters the nonuniqueness problem in quantizing a circuit.

So, our starting point would be a generalized quantum theory which

includes maximal symmetric operators as observables (Wan et al., 1995).

Our method of quantization by parts consists of three clearly defined stages:
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1. Partial quantization stage. This involves an initial quantization of

separate branches of the circuit. To quantize in a branch, we shall first quantize

a classical observable into an operator AÃ0 on the set of infinitely differentiable
functions of compact support within an appropriate Hilbert space of square-

integrable functions. Nonuniqueness arises because AÃ
0 may have many maxi-

mal symmetric extensions. So there may not be a unique maximal symmetric

operator to correspond to a given classical observable on each branch of

the circuit.

2. Composite quantization stage. This involves combining the partially
quantized parts into a single quantized system. This is achieved by taking

the direct sum of the partially quantized quantities and deriving its self-

adjoint or maximal symmetric extensions. This can become a rather intricate

and lengthy process. As will be seen later, our present method of quantization

also applies to one-branch circuits. For such circuits this composite quantiza-

tion stage is absent. Again there is the possibility of nonuniqueness emerging.
The nonuniqueness that arises from partial and composite quantization turns

out to be a blessing in disguise which motivates the injection of fundamental

physical considerations to resolve the quantization problem.

3. Correlations stage. This is the final stage. Here we have to examine

the physical system carefully. The object here is to establish the correct
relationship between cognate observables. Additional physical assumptions

may be required to complete this final stage successfully. There are general

conditions applicable to all systems. In addition, we have to bring the physical

properties of the system into the picture in order to establish correlation

conditions appropriate to the system. As will be seen presently, even a one-

branch circuit requires careful correlations.

In carrying out the correlations stage we should note that classical

relations generally do not carry over as operator relations in a straightforward

manner. An example is the relationship between the momentum p and the

Hamiltonian H of a particle in an infinite square potential well discussed in

most textbooks. Classically we have H 5 p 2 inside the well, taking the mass
to be one half for simplicity. The Hamiltonian is quantized into a unique self-

adjoint operator HÃon a domain consisting of twice-differentiable functions

vanishing at the well boundary. On the other hand, the momentum, quantized

as the differential expression 2 i " d /dx on C `
0 , has an infinite number of self-

adjoint extensions pÃl parametrized by a real number l (Akhiezer and Glazman,

1963). Clearly HÃÞ pÃ2l for any l .
In this paper we shall confine our attention to the case where a (constant)

direct supercurrent flows in our superconducting systems without a voltage.

Then the total current in the circuit is equal to the supercurrent flowing, since

there is no normal current component here (Rose-Innes and Rhoderick, 1969).



2156 Wan and Fountain

Such a direct supercurrent is therefore a measurable physical quantity which

should be treated as an observable. In other words, we should have a supercur-

rent observable in addition to the more familiar observables like momentum
and energy. For a direct current in a superconducting circuit we shall make

two physical assumptions which will be seen to lead to the necessary correla-

tion conditions:

(PA1) A superconducting state with an established supercurrent I corres-

ponds to a (generalized) eigenfunction of the supercurrent operator JÃwith

the current I equal to the corresponding eigenvalue j.
(PA2) A superconduct ing state with an established supercurrent I must

also correspond to a (generalized) eigenfunction of the Hamiltonian of the

system.

Assumption (PA1) is in keeping with orthodox quantum mechanical

situation that a state corresponding to a definite value a of an observable AÃ

should be described by the eigenfunction w a of AÃassociated with the eigen-
value a. If such a state were to remain the eigenfunction of AÃassociated with

eigenvalue a as time goes on, then w a must be an eigenfunction of the

Hamiltonian as well. This is the reason for assumption (PA2), which ensures

the stability of the supercurrent in a superconducting state.

As we shall see later, (PA1) and (PA2) together lead to superselection
rules which distinguish our present superconducting system from a usual

one-particle system in orthodox quantum mechanics. Intuitively we can also

see that the phenomenon of tunneling manifests itself quite differently for a

beam of electrons and for a condensate. Electrons can be arranged to flow

though a circuit one by one in metallic nanostructures and they can pass

though an insulating barrier by tunneling (Devoret et al., 1992). However,
for single-electron tunneling a reflection invariably occurs if the eigenfunction

corresponds to an energy eigenvalue less than the barrier height (Exner and

Seba, 1987; Mandl, 1992). This is because an eigenfunction of the Hamilto-

nian is not an eigenfunction of the momentum operator. Consequently such

an electron current will experience resistance (Devoret et al., 1992). (PA1)

is equivalent to an assumption of no reflection at the barrier for a supercon-
ducting state, this being a characteristic feature distinguishing a superconduct-

ing state for a condensate from a usual one-particle state for an electron. This

assumption is also crucial in determining the kinetic energy operators and in

the derivation of Josephson’ s equation, as will be seen later.

2. TWO-BRANCH CIRCUITS

Before we consider one-branch circuits we shall start with the standard,

and hence more familiar, two-branch circuit (Feynman, 1965). The method

of quantization by parts has recently been successfully applied to to such a
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system (Wan and Fountain, 1996). We shall briefly review the results here

as an introduction to the methodology involved.

Consider two long superconductors linked up through a thin, typically
of the order of a nanometer, insulating layer known as a Josephson junction.

We shall consider the symmetrical case where the superconductors on either

side of the junction are identical and where the junction itself is symmetrical

about its center. It is known that at low temperatures when the metal is in a

superconducting state a direct current j can tunnel through the junction as a

supercurrent without generating a voltage across the insulator junction. It is
also known that j has a sinusoidal dependence on the phase difference l in

the wave function across the barrier, as given by the Josephson equation

j 5 j0 sin l , where j0, which is a constant dependent on the physical geometry

of the junction, but not on l , is the maximum (critical) dc current possible

across the junction while still maintaining superconduct ivity. Let us idealize

the geometry of the system as the real line R 5 ( 2 ` , ` ) broken into two
half-lines R 2

0 5 ( 2 ` , 0) and R 1
0 5 (0, ` ). We can now proceed with the

method of quantization by parts.

2.1. Momentum: Partial and Composite Quantization

2.1.1. Partial Quantization

Let us start with the the right-hand branch B2, i.e., B2 5 R 1
0 . The Hilbert

space associated with this branch is *2 5 L 2(B2) 5 L 2( R 1
0 ). It is well known

that there does not exist a self-adjoint momentum operator in the Hilbert

space L 2( R 1
0 ). In other words, starting with the differential operator 2 i " d/

dx acting on C `
0 ( R 1

0 ), we can obtain no self-adjoint extension in L 2( R 1
0 ).

However, there is a unique maximal symmetric extension which we shall

denote by pÃ+ (Wan et al., 1995; Akhiezer and Glazman, 1963; Weidman,

1980).

Similarly, for the momentum on the left-hand branch B1 5 R 2
0 , for which

the Hilbert space is *1 5 L 2(B1) 5 L 2( R 2
0 ), we have the maximal symmetric

operator pÃ2 .
To conclude, we shall take the partially quantized momentum for B1

and B2 to be pÃ1 5 pÃ2 in *1 and pÃ2 5 pÃ+ in *2, respectively, and JÃ1 5
(q /m) pÃ1, JÃ2 5 (q /m)pÃ2 as the partially quantized supercurrent operators (Wan

et al., 1995).

The appearance here of symmetric operators which are not self-adjoint

may cause some unease in some quarters. We would argue that quantum
mechanics should be extended beyond the set of self-adjoint operators for

the description of observables. In fact there is now a well-established general-

ization of quantum mechanics beyond the set of self-adjoint operators (Busch

et al., 1995; Schroeck, 1996). The orginal reason for employing self-adjoint



2158 Wan and Fountain

operators is that a self-adjoint operator generates a unique projector-valued

(PV) measure through the spectral theorem and that this spectral measure

provides the basis for the probabilistic interpretation of quantum mechanics.
It has been realized for some time that the probabilistic interpretation of

quantum mechanics does not necessarily require the restriction to self-adjoint

operators. All that is required is positive operator-valued (POV) measures.

A PV measure is just a special case of a POV measure. It is a well-known

mathematical result that a maximal symmetric operator generates a unique

POV measure through a generalized spectral theorem. There is then no reason
not to include maximal symmetric operators for the description of observables.

Such an extension would legitimize the use of the quantized radial momentum

operator, which is maximal symmetric but not self-adjoint. More details can

be found in Wan et al. (1995), Busch et al. (1995), and Schroeck (1996).

2.1.2. Composite Quantization

1. The composite momentum is a self-adjoint extension of the direct
sum PÃ(2) 5 pÃ1 % pÃ

2 in *(2) 5 *1 % *2. This direct sum has a family of

self-adjoint extensions parametrized by a real variable l in the range ( 2 p ,

p ] and for each l P ( 2 p , p ] the self-adjoint extension PÃ(2)
l is given on the

domain (Wan and Fountain, 1996)

$(PÃ(2)
l ) 5 { f 5 f 1 % f 2 P *(2): f s P AC(Bs), d f s/dx P *s , s 5 1, 2,

f 1(0) 5 e 2 i l f 2(0)} (1)

by

PÃ(2)
l 5 2 i " 1 d f 1

dx
%

d f 2

dx 2 " f P $(PÃ(2)
l ) (2)

2. The composite supercurrent is then JÃ(2)
l 5 (q/m) PÃ(2)

l .

3. Generalized eigenfunctions of PÃ(2)
l and JÃ(2)

l are of the form

w (2)
l p 5 w 1 l p % w 2 l p, p P R (3)

w 1 l p 5 e i-px, x P R 2
0 and i- 5 i / " (4)

w 2 l p 5 e i l e i-px, x P R 1
0 (5)

with generalized eigenvalues p (2)
l 5 p and j (2)

l p 5 qp/m, respectively. When

l 5 0 these functions are continuous across the junction and the corresponding
self-adjoint extension is simply the standard momentum operator pÃ5 2 i " d/

dx in L 2( R ). Note that w 2 l p is not a generalized eigenfunction of pÃ2 since

w 2 l p does not satisfy the boundary condition at x 5 0 for functions in the

domain of pÃ2. Similarly w 1 l p is not a generalized eigenfunction of pÃ1.
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2.2. Kinetic Energy: Partial and Composite Quantization

For the partially quantized kinetic energy operators we take

KÃ0s 5 2
" 2

2m

d2

dx2 on the domain C `
0 (Bs), s 5 1, 2 (6)

To obtain a kinetic energy operator for the composite system we first take

the direct sum KÃ(2)
0 5 KÃ01 % KÃ02 and then proceed to extend this operator.

KÃ(2)
0 has deficiency indices (2, 2), and hence has a four-parameter family of

self-adjoint extensions (Richtmyer, 1978). Our task is to single out one

particular extension. First we desire self-adjoint extensions which are symmet-

rical with respect to the junction at the origin x 5 0. This can be shown to

narrow the extensions down to a two-parameter family. Moreover, this two-

parameter family can be determined by imposing boundary conditions at the
junction x 5 0, specified by two real parameters a and b, on the wave

functions in the domains of the extension operators as follows:

f 810 5 a f 10 1 b f 20, a, b P R (7)

f 820 5 2 a f 20 2 b f 10 (8)

where the prime denotes spatial differentiation and the subscript 0 denotes

values at x 5 0. We shall refer to the above boundary conditions for the two-

branch circuit as (BC2) and denote by KÃ(2)
a,b the self-adjoint extension deter-

mined by each pair (a, b) of parameter values. We should point out that as in

the case of an infinite square potential well the kinetic energy and momentum

operators do not neccesarily follow the simple classical relationship, i.e.,
generally we have KÃ(2)

a,b Þ (PÃ(2)
l )2/2m.

2.3. Correlations: The Third Quantization Stage

Our task is to describe the dc Josephson effect with an established

dc supercurrent I. First we infer from physical assumption (PA1) that the
superconducting state C (2)

I , being an eigenfunction of the current operator

JÃ(2)
l corresponding to the eigenvalue I, can be taken to be w (2)

l p with I 5 j (2)
l p

for some p. Next let us see how this helps to determine the kinetic energy

operator KÃ(2)
a,b. The crucial point here is that w (2)

l p must be in the domain of the

as yet undetermined Hamiltonian. Since the kinetic energy KÃ(2)
a,b is an additive

part of the Hamiltonian, w (2)
l p must also be in the domain of KÃ(2)

a,b. As with any
function in the domain of any of the KÃ(2)

a,b, the function w (2)
l p must satisfy

boundary conditions (BC2). Note that we formally include generalized eigen-

functions in the relevant domains. (BC2) are local conditions, so the fact

that w (2)
l p are not square-integrable does not affect the reasoning.
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Substituting w (2)
l p into (BC2), we get

i-p 5 a 1 bei l (9)

i-pei l 5 2 aei l 2 b (10)

Equating real and imaginary parts these equations yields

0 5 a 1 b cos l (11)

p 5 " b sin l (12)

The values 0, p for l are excluded here for good reasons (Wan and Foun-

tain, 1996).

Before proceeding further, we make the following physical assumption:

(PA3) The parameter b plays the role of a coupling constant and is
characteristic of and unique to the junction. For example, b could depend on

the geometry of the junction, and in particular b should be independent of l .

It follows from (PA3) that the other parameter a becomes dependent

on l , i.e., a 5 2 b cos l . We obtain the Josephson equation (Wan and

Fountain, 1996)

j 5 j0sin l (13)

where

j 5 j (2)
l p 5

q

m
p, j0 5

q

m
" b . 0 on assuming b . 0 (14)

We can identify j with the established current I and j0 with the critical current.

The critical current is seen to be characteristic of the junction and independent
of l . Note that constants a, b emerge from the self-adjointness conditions;

they are not put in by hand, as it were.

For the sake of clarity we shall make explicit the following general

quantum mechanical assumption before proceeding further:

(PA4) Each observable of the superconducting system as a whole with

an established current should correspond to a unique operator, up to the usual
unitary equivalence.

To apply (PA4) to the momentum, we require the current I to determine

the value of l so as to single out a momentum operator PÃ(2)
l . Since the value

of l is uniquely determined by j 5 I only over a range of p , assumption

(PA4) would restrict l to a range of p . Let us choose the range to be [ 2 1±2 p ,
0) ø (0, 1±2 p ]. As it turns out, this restriction also helps to determine the value

of a and hence the kinetic energy operator KÃ(2)
a,b. Further analysis of this theory

leads naturally to the establishment of a superselection rule (Wan and Foun-

tain, 1996). The gist of the argument will also be seen later in the section

dealing with one-branch circuits.
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Finally we should mention that there are other important two-branch

circuits, e.g., the dc SQUID configurations with a superconducting ring broken

into two halves by two Josephson junctions. Such a circuit has recently been
investigated by Harrison and Wan (1997).

3. ONE-BRANCH CIRCUITS: UNIFORMLY THICK
SUPERCONDUCTING RINGS WITH A JOSEPHSON
JUNCTION

Apart from the infinite line in one dimension, there are two notable

cases: (1) a uniformly thick superconducting ring interrupted by a Josephson

junction (JJ), and (2) continuous, uniformly thick superconduct ing rings
without a JJ. These two cases have been investigated using a different scheme

(Wan and Harrison, 1993) which requires a number of somewhat ad hoc

assumptions. Here we shall examine a uniformly thick superconducting ring

with a JJ using the method of quantization by parts. It can be seen that the

ad hoc assumptions used previously are not needed in our present method.

Due to quantum tunneling processes, a dc supercurrent can persist around
the ring, passing through the JJ without an applied voltage. The JJ is assumed

to be symmetrical about its center. Here, we shall for simplicity assume the

absence of an external magnetic field. A supercurrent could be set up initially

with the help of an external magnetic field. Once the current is set up, the

external field could then be removed (Feynman, 1965), so that a steady state

could be achieved without the presence of an external magnetic field. To
model the system, we start with a classical particle of mass m and charge q
constrained to move in the open interval S 1

c 5 { u P ( 2 p , p )} with the JJ

located at u 5 p . The appropriate Hilbert space L 2(S 1
c) of square-integrable

functions on S 1
c with respect to the measure r d u , r being the radius of the ring.

3.1. Momentum: Partial and Composite Quantization

We start with the differential operator 2 (i " /r) d /d u defined on

C `
0 (S 1

c). This operator has a one-parameter family of self-adjoint extensions
PÃ(1)

l with domain (Wan and Harrison, 1993; Fano, 1971)

D l 5 { f : f P AC(S 1
c), f 2 5 e i l f +, [ 2 (i " /r) d /d u ] f P L 2(S 1

c)} (15)

where AC(S 1
c) is the set of absolutely continuous functions f ( u ) on S 1

c, l is

a real number in the interval ( 2 p , p ], and f 2 5 f ( 2 p ), f + 5 f ( p ). The

momentum is then quantized as the operator PÃ(1)
l 5 2 (i " /r) d/d u on D l for

some as-yet-undefined value of l . The operator possesses a discrete spectrum

p (1)
l ,n 5 ( " /r)(n 2 l /2 p )
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with corresponding eigenfunctions

c (1)
l ,n( u ) 5 exp[i (n 2 l /2 p ) u ] 5 exp[i-p l ,nr u ], n 5 0, 6 1, 6 2, . . .

As for the two-branch circuit, we shall normalize plane waves to having an

absolute value of 1 everywhere so as to produce plane waves representing

an average of one particle per unit volume. This enables us to define the

same expression of the supercurrent operator in terms of the momentum. In

an earlier paper (Wan and Harrison, 1993) a different normalization is used
resulting in a different current/momentum relationship.

We may introduce supercurrent and enclosed magnetic flux operators

JÃ(1)
l 5

q

m
PÃ(1)

l and F Ã(1)
l 5 LJÃ(1)

l 5
2 p r

q
PÃ(1)

l (16)

whose eigenfunctions are c (1)
l ,n( u ) with j (1)

l ,n 5 (n 2 l /2 p ) q " /mr and F (1)
l ,n 5

(n 2 l /2 p ) F 0 as their respective eigenvalues. Here F 0 5 h /q is the unit flux

quantum and the self-inductance L is chosen to be 2 p mr/q 2. The expression

for L here is different from that used previously because we have a different

normalization constant for the momentum eigenfunctions. Note that for our
circuit with a Josephson junction we shall assume that l Þ 0, since l 5 0

is a condition for a continuous ring without a junction. We shall see later

that we should also reject the case with l 5 p (Appendix A).

3.2. Kinetic Energy: Partial and Composite Quantization

For the kinetic energy we start with the operator

KÃ(1)
0 5 2

" 2

2m

d 2

dx2 5 2
" 2

2mr2

d 2

d u 2 on C `
0 (S 1

c)

This operator is known to have many self-adjoint extensions (Hudson and

Pym, 1980). Our task is to sift out the relevant ones from the host of possible

extensions. Two obvious self-adjoint extensions present themselves. The first

one is the usual Hamiltonian for the infinite square-well potential obtained

by requiring the domain to consist of functions vanishing at u 5 2 p , p , in

addition to differentiability. This extension is not suitable, as it is incompatible
with PÃ(1)

l in the sense that the eigenfunctions of c (1)
l ,n( u ) of PÃ(1)

l are not even

in the domain of this extension. The second obvious self-adjoint extension

is simply PÃ(1)
l )2/2m. This is also not suitable by a symmetry consideration

which will be discussed presently.
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Let $ be the set of absolutely continuous functions f on 61
c such that

d f
d u

P AC(61
c),

d 2 f
d u 2 P L 2(61

c)

Let a 5 { a 82 , a 2 , a 81 , a +} and b 5 { b 82 , b 2 , b 81 , b +} be two sets of complex

numbers subject to two conditions:

(C1) The first set is not a multiple of the second set, i.e., there is no

number d such that a 82 5 d b 82 , a 2 5 d b 2 , a 81 5 d b 81 , and a + 5 d b +.
(C2) These complex numbers are related by

a 8*2 a 2 2 a *2 a 82 5 a 8*1 a + 2 a *1 a 81 , b 8*2 b 2 2 b *2 b 82 5 b 8*1 b + 2 b *1 b 81

a 8*2 b 2 2 a *2 b 82 5 a 8*1 b + 2 a *1 b 81 , b 8*2 a 2 2 b *2 a 82 5 b 8*1 a + 2 b *1 a 81

Finally, let $ a , b be a subset of $ consisting of functions f satisfying the
following boundary conditions:

a 82 f 82 2 a 2 f 2 5 a 81 f 81 2 a + f + (17a)

b 82 f 82 2 b 2 f 2 5 b 81 f 81 2 b + f + (17b)

where f 82 and f 81 are the derivatives of f with respect to u evaluated at
u 5 2 p and u 5 p , respectively. These boundary conditions for the one-

branch circuit are referred to as (BC1). All self-adjoint extensions of KÃ(1)
0 are

given by the following known theorem (Hudson and Pym, 1980):

Theorem 1. The operator KÃ(1)
a , b defined on the domain $ a , b by

KÃ(1)
a , b f 5 2

" 2

2mr2

d 2 f
d u 2 " f P $ a , b

is self-adjoint, and conversely every self-adjoint extension of KÃ(1)
0 is of this

form.

First we shall slim down the family of extensions by symmetry considera-

tions. In view of the symmetry of the superconducting ring and the junction
assumed at the outset there should be no preferred direction of current flow

either clockwise or anticlockwise. In other words, the dynamics and hence

the Hamiltonian must be invariant with respect to the direction of the current

flow. It follows that the Hamiltonian must have reflection symmetry and

therefore should commute with the parity opeator Ã Ãdefined by ( Ã Ãf )( u ) 5
f ( 2 u ). This means that with respect to the parity operator its domain must
be invariant. The domain of (PÃ(1)

l )2/2m is not invariant. As in the case of the

two-branch circuit, this extension is hence not suitable. We would also contend

that the above symmetry argument applies to the kinetic energy so that its

domain should also be invariant with respect to the parity operator, i.e., we
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look for KÃ(1)
a , b with appropriate a , b so that f P $ a , b Þ Ã Ãf P $ a , b . Hence,

in addition to boundary conditions (BC1) we must also have, " f P $ a , b ,

H 2 a 82 f 81 2 a 2 f + 5 2 a 81 f 82 2 a + f 2

2 b 82 f 81 2 b 2 f + 5 2 b 81 f 82 2 b + f 2 J
or H 2 a 81 f 82 2 a + f 2 5 2 a 82 f 81 2 a 2 f +

2 b 81 f 82 2 b + f 2 5 2 b 82 f 81 2 b 2 f + J
These equations seemingly correspond to two new sets of parameters a Ä 5
( 2 a 81 , a +, 2 a 82 , a 2 ) and b Ä 5 ( 2 b 81 , b +, 2 b 82 , b 2 ). These sets of parameters

also satisfy (C1) and (C2). For the same self-adjoint extension these sets
must be proportional to the previous sets, i.e., we must have

either a Ä 5 d a , b Ä 5 d 8 b or a Ä 5 d b , b Ä 5 d 8 a

for some d , d 8 P C (18)

It turns out that only the second alternative is the correct choice (see Appendix

A) and we can, without loss of generality, set the proportional ity constants

to 1, i.e., we have

a 82 5 2 b 81 , a 2 5 b +, a 81 5 2 b 82 , a + 5 b 2 (19)

Conditions (C2) reduce to

a 8*2 a 2 2 a *2 a 82 5 a 8*1 a + 2 a *1 a 81 ,

a 8*1 a 2 1 a *1 a 82 5 a 8*2 a + 1 a *2 a 81

This reduces boundary conditions (BC1) to

a 82 f 82 2 a 2 f 2 5 a 81 f 81 2 a + f + (20)

a 81 f 82 1 a + f 2 5 a 82 f 81 1 a 2 f + (21)

In Appendix A we show that these can be rearranged into the form of

(BC2), i.e.,

f 82 5 a f 2 1 b f +, a, b P R (22)

f 81 5 2 a f + 2 b f 2 (23)

Everything is highly nonunique so far. We must proceed to the correlations

stage as we did for the two-branch circuit earlier to try to resolve this

nonuniqueness problem.
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3.3. Correlations Stage

The boundary conditions for the kinetic energy operator are seen to be
the same as conditions (BC2) for the two-branch circuit. We can therefore

derive the Josephson equation as before by requiring the eigenfunctions of

the supercurrent operator c l ,n to satisfy the above boundary conditions:

c (1)8

l ,n 2 5 a c (1)
l ,n 2 1 b c (1)

l ,n 1 , c (1)8

l ,n 1 5 2 a c (1)
l ,n 1 2 b c (1)

l ,n 2 a, b P R (24)

Þ i-rp l ,n 5 a 1 bei l , i-rp l ,n e i l 5 2 aei l 2 b (25)

Þ 0 5 a 1 b cos l , rp l ,n 5 " bsin l (26)

Assuming the parameter b, which is again seen to play the role of a

coupling constant, to be characteristic of and unique to the junction, the other

parameter a becomes dependent on l and we obtain the Josephson equation

j 5 j0 sin l (27)

where

j 5 j (1)
l ,n 5

q

m
p, j0 5

q

mr
" b . 0 on assuming b . 0 (28)

The Josephson equation can be rewritten as

n 2
l

2 p
5 b sin l (29)

We can now identify j above with the established current I, and j0 with the
critical current. The critical current is seen to be characterisitc of the junction

and independent of l .

In passing we should point out that there is an existing procedure to

derive the Josephson equation for this one-branch circuit through a process

of energy minimization (Gough, 1991; Wan and Harrison, 1993).2 Unlike

our present scheme of quantization by parts, which is applicable to different
circuit configurations, this process is not generally applicable; the previous

two-branch circuit is a case in point.

3.4. Constraint and Superselection Rule

For our present superconducting system the state is set up by the super-

current, which can be established by various physical means. The Josephson

equation is a constraint relating the supercurrent to various parameters.

2 There is a misprint in equation (14) of Gough (1991), which is missing a term to proportional
to 2 cos(2 p F T/ F 0).
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In particular, assumption (PA4) again restricts the phase l to the range

[ 2 p /2, 0) ø (0, p /2] to establish a one-to-one correspondence between the

current and the phase. To sum up we have:

1. The critical current j0 is related to the physical nature of the junction,

and j0 determines the parameter b.

2. The current j together with j0 determines l , and hence determines

the parameter a. The phase l together with j0 also determines j.
3. The two items j and j0 determine operators PÃ(1)

l , JÃ(1)
l , and F Ã(1)

l .
4. The two parameters a, b determine the original parameters a , b ,

and hence the kinetic energy operator KÃ(1)
a , b , which may be relabeled

KÃ(1)
a,b.

5. The current also determines the state of the system c (1)
l ,n.

The consequence of all these constraints is the emergence of a superselec-
tion rule. Let us consider the case where an established supercurrent I is

equal to the eigenvalue j (1)
l 0,0, namely with n 5 0, of the supercurrent operator

JÃ(1)
l 0 , where j (1)

l 0,0 and l 0 are related by the Josephson equation j (1)
l 0,0 5

j0sin l 0. A careful examination of the above constraints reveals that it is

inconsistent to take JÃ(1)
l 0 as the supercurrent operator of the system. The

operator JÃ(1)
l 0 possesses other eigenvalues j (1)

l 0, n, n Þ 0, corresponding to differ-

ent values of momentum p l 0, n. But these other eigenvalues j (1)
l 0, n with n Þ 0

are incompatible with the Josephson equation, i.e., j (1)
l 0, n Þ j0sin l 0. A new

current j (1)
l 0, n should correspond to a new phase l n according to the Josephson

equation, and consequently a new operator JÃ(1)
l n with j (1)

l n, n 5 j0 sin l n, provided

l n exists to satisfy the equation. This process can go on. We would end up
with a situation where not all eigenvalues of the current operator JÃ(1)

l 0 are

admissible, a result in contradiction with basic orthodox quantum mechanical

assumptions. We can resolve this difficulty by recognizing that our system

with a given supercurrent is a one-state system. The appropriate Hilbert space

is really the generalized subspace spanned by the generalized eigenfunction

c (1)
l 0,0, where l 0 is related to the current by the Josephson equation. Let us

denote this subspace by *(1)
I . The appropriate supercurrent operator is really

the restriction JÃ(1)
I of JÃ(1)

l 0 to the subspace *(1)
I . The same argument applies to

the momentum and the kinetic energy operators. In other words, the appro-

priate momentum and kinetic energy operators are respectively the restrictions

PÃ(1)
I of PÃ(1)

l and KÃ(1)
I of KÃ(1)

l to *(1)
I . There is no coherent superposition of

states corresponding to different values of the supercurrent . The situation is
similar to that of the two-branch circuit; systems with different currents can

be accommodated by taking the appropriate direct integrals. Hence the system

possesses a continuous superselection rule. Explicit expressions of these direct

integrals are set out in Wan and Harrison (1993).
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4. THREE-BRANCH CIRCUITS

A typical example is a Y-shape circuit configuration with a Josephson

junction preventing direct contact of the three long branches as shown in the
following diagram:

Such a circuit has some very interesting features. We aim to present a system-

atic study here.

4.1. Momentum Operators

4.1.1. Partial Quantization

It is envisaged that a supercurrent flows into the circuit from the far

left into branch B1. Branch B1 is therefore chosen to correspond to R 2
0 and

the Hilbert space is therefore *1 5 L 2(B1) 5 L 2( R 2
0 ). Branches B2, B3 are

chosen to correspond to R 1
0 and the Hilbert spaces are therefore chosen to

be *2 5 L 2(B2) 5 L 2( R 1
0 ), *3 5 L 2(B3) 5 L 2 ( R 1

0 ). The corresponding

partially quantized momenta are respectively pÃ1 5 pÃ2 in *1, pÃ2 5 pÃ+ in *2,

and pÃ3 5 pÃ+ in *3. These three operators are all maximal symmetric with

deficiency indices (0, 1), (1, 0), and (1, 0), respectively.

4.1.2. Composite Quantization

As the composite momentum we take the direct sum

PÃ(3)
0 5 pÃ1 % pÃ2 % pÃ3 in *(3) 5 *1 % *2 % *3 (30)

Since PÃ(3)
0 has deficiency indices (2, 1) it follows that PÃ(3)

0 has no self-adjoint

extensions (Blank et al., 1994) and that all closed symmetric extensions are

merely maximal symmetric. We can work out all these extensions (for details

see Appendix B). First we note that all these extensions are restrictions of
the adjoint, PÃ(3)²

0 5 pÃ²1 % pÃ²2 % pÃ²3, of PÃ(3)
0 . The domain of the adjoint operator

is $(PÃ(3)²
0 ) 5 $( pÃ²1) % $( pÃ²2) % $( pÃ²3). Furthermore, it can be shown (Appen-

dix B) that the extensions are characterizable by restrictions of PÃ(3)²
0 to domains

satisfying certain boundary conditions on the wave functions at the junction.
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These boundary conditions are determined by three real parameters l 5 ( a ,

l 2, l 3), as follows (Appendix B):

f 20 5 ! 1 2 a 2 e i l 2 f 10, l 2 P ( 2 p , p ] (31)

f 30 5 a e i l 3 f 10, l 3 P ( 2 p , p ] (32)

where a P [0, 1], f l(xl) P *l, f l0, 5 f l(0), and l 5 1, 2, 3. In other words

we have a three-parameter family of maximal symmetric extensions which

we shall denote by PÃ3l . The generalized eigenfuctions of PÃ(3)
l are of the form

(Appendices B and C)

w (3)
l p 5 e i-px1 % ! 1 2 a 2 e i l 2ei-px2 % a e i l 3 e ipx3, xl P B l (33)

Since the circuit is assumed symmetrical in B2 and B3; we seek extensions

which are invariant with respect to the interchange of B2 and B3. Clearly

such extensions correspond to the choice a 5 2 2 1/2, l 2 5 l 3 5 l P
( 2 p , p ]. In other words the boundary conditions are

f 20 5
1

! 2
e i l f 10 (34)

f 30 5
1

! 2
e i l f 10 (35)

The resulting maximal symmetric extensions, to be denoted by PÃ(3)
l , possesses

generalized eigenfunctions of the form

w (3)
l p 5 e i-px1 %

1

! 2
e i l e i-px2 %

1

! 2
e i l e i-px3 (36)

PÃ(3)
l should not to be confused with the general expression PÃ(3)

l . Also, w (3)
l p

should not to be confused with the general expression w (3)
l p .

For later discussions we shall also require the following two asymmetri-

cal cases:

1. Case 1 when a 5 0 with the resulting extension PÃ(3)
l 2 5 PÃ(2)

l 2 % pÃ3.
Here PÃ(2)

l 2 is a self-adjoint extension of pÃ1 % pÃ2 in *1 % *2 derived earlier

for the two-branch circuit. We have

f 20 5 e i l 2 f 10, l 2 P ( 2 p , p ] (37)

f 30 5 0 (38)

Generalized eigenfunctions of PÃ(3)
l 2 are of the form

w (3)
l 2p 5 e i-px1 % e i l 2 e i-px2 % O3 where O3 is the zero function in *3 (39)

Note that pÃ3 has no generalized eigenfunction in *3 because of the condition

f 30 5 0.
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2. Case 2 when a 5 1 with the resulting extension denoted by PÃ(3)
l 3 .

This is the same as case 1 in that PÃ(3)
l 3 is just the direct sum of the self-adjoint

extension PÃ(2)
l 3 of pÃ1 % pÃ3 in *1 % *3 and pÃ2 in *2. We have

f 20 5 0 (40)

f 30 5 e i l 3 f 10, l 3 P ( 2 p , p ] (41)

Generalized eigenfunctions of PÃ(3)
l 3 are of the form

w (3)
l 3 p 5 e i-px1 % O2 % ei l 3e i-px3, where O2 is the zero function in *2

(42)

We have to proceed to the correlations stage in order to be in a position

to make a final choice of the momentum operator. In the present case the
other two related observables are the supercurrent and the kinetic energy.

4.2. Supercurrent Operators

4.2.1. Partial and Composite Quantization

The objective here is to introduce a current operator for the circuit as
a whole. The partially quantized supercurrent operators for the branches are

JÃl 5 (q /m)pÃl. The supercurrent operator for the circuit as a whole is JÃ(3)
l 5

(q /m) PÃ(3)
l , which admits w (3)

l p as an eigenfunction with expected eigenvalue

j (3)
l p 5 (q /m)p. The question arises as to how one would interpret such an

eigenfunction. The function w (3)
l p is a direct sum of three plane waves. What

is new here is that these plane waves for the branches do not all normalize
to having an absolute value of one. Since the expression j 5 (q /m)p relating

current and momentum is based on a plane wave normalized to an absolute

value one, we have to take the normalization factor into account in our

interpretation of w (3)
l p . In other words, we should interpret w (3)

l p as representing

a state with a current j1 5 (q /m)p in branch B1, a current j2 5 (1 2 a 2)

(q /m)p in B2, and j3 5 a 2 (q /m)p in B3. This interpretation is consistent with
current conservation since B2 and B3 are in parallel. We are interested in the

following special cases:

1. The symmetrical case with a 5 2 2 1/2, l 2 5 l 3 5 l . The functions

w (3)
l p do not vanish on any branch. The momentum operator is PÃ(3)

l and the

supercurrent operator for the circuit becomes JÃ(3)
l 5 (q /m) PÃ(3)

l with

eigenvalues j (3)
l p 5 (q /m)p. This corresponds to an incoming current I that

splits equally into branches B2 and B3.

2. The asymmetrical case with a 5 0. The functions w (3)
l 2p vanish on B3.

The momentum operator is PÃ(3)
l 2 and the supercurrent operator for the circuit

becomes JÃ(3)
l 2 5 (q /m)PÃ(3)

l 2 with eigenvalues j (3)
l 2p 5 (q /m)p. This corresponds
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to an incoming current I in B1 which goes straight through to B2 with no

current going into B3.

3. The asymmetrical case with a 5 1. The functions w (3)
l 3p vanish on B2.

The momentum operator is PÃ(3)
l 3 and the supercurrent operator for the circuit

becomes JÃ(3)
l 3 5 (q /m)PÃ(3)

l 3 with eigenvalues j (3)
l 3p 5 (q /m)p. This corresponds

to an incoming current I in B1 which goes solely through to B3 with no

current going into B2.

4.3. Kinetic Energy Operators

We can adopt as the partially quantized kinetic energy operators in

the branches

KÃ0l 5 2
" 2

2m

d 2

dx2
l

on C `
0 (Bl), l 5 1, 2, 3

For composite quantization we construct the direct sum

KÃ(3)
0 5 KÃ01 % KÃ02 % KÃ03 defined on

$(KÃ(3)
0 ) 5 $(KÃ01) % $(KÃ02) % $(KÃ03) (43)

The deficiency indices of KÃ(3)
0 are (3, 3), and so KÃ(3)

0 possesses a nine-parameter

family of self-adjoint extensions (Exner and Seba, 1987; Richtmyer, 1978).

It would be tedious as well as pointless to list all the extensions. It is

sufficient to consider only those extensions which can be correlated with the

momentum and current operators obtained earlier. There are three cases

of interest:
1. The symmetrical case with extensions invariant with respect to the

interchange of B2 and B3. We can no longer rely on our previous results for

two-branch circuits to obtain these self-adjoint extensions. We have to start

afresh and go through the lengthy process to find these extensions. Details

are presented in Appendix D. The idea is as follows. First the requirement
for invariance with respect to the permutation of B2 and B3 reduces the

nine-parameter family to a two-parameter family of relevant kinetic energy

operators. This two-parameter family can be specified by boundary conditions

on the wave functions at the junction, i.e., at x 5 0 characterized by two

arbitrary real parameters a, b on the domains of the extension operators in

a way similar to (BC2) for two-branch circuits. We shall refer to these
as (BC3):

F 810 5 a F 10 1 b( F 20 1 F 30), a, b P R (44)

F 820 1 F 830 5 2 a ( F 20 1 F 30) 2 2b F 10 (45)
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where a prime represents differentiation with respect to the appropriate posi-

tion variable. We shall denote the resulting extensions by KÃ(3)
a,b.

2. The asymmetrical case with a 5 0. The momentum operator is
PÃ(3)

l 2 5 PÃ(2)
l 2 % pÃ3 and the current operator becomes JÃ(3)

l 2 5 (q/m)(PÃ(2)
l 2 % pÃ3).

The system is acting like a two-branch circuit since there is no current

in B3. It follows that we would obtain similar extensions by proceeding

as follows:

(a) First we consider a self-adjoint extension K (2)
a,b of KÃ01 % KÃ02 for B1

and B2.

(b) Then we take the direct sum of K (2)
a,b with a self-adjoint extension

of KÃ03 in * 1
3 , a natural choice being KÃ3 5 (1/2m) pÃ²3 pÃ3, i.e., we get KÃ(3)1,2

a,b

5 KÃ(2)
a,b % KÃ3.

3. The asymmetrical case with a 5 1. This is the same as above except

with branches B2 and B3 interchanged. Choose the kinetic energy operator

to be the direct sum of KÃ(2)
a,b in *1 % *3 and KÃ2 5 (1/2m)pÃ²2 in *2. The

resulting extensions are denoted by KÃ(3)1,3
a,b .

4.4. Correlations

The physical phenomenon under investigation is the dc Josephson effect.

Our task is to describe the system with an established dc supercurrent . We
shall proceed as we did for the two-branch circuit. Again we examine three

special cases:

1. The symmetrical case with a 5 2 2 1/2, l 2 5 l 3 5 l . Substituting

w (3)
l p into the boundary conditions (BC3), we obtain

i-p 5 a 1 ! 2bei l (46)

i-pei l 5 2 aei l 2 ! 2b, provided l Þ 0, p (47)

When l 5 0, p the function w (3)
l p does not satisfy boundary conditions (BC3)

and should be excluded.

Equating real and imaginary parts of the above equations yields

0 5 a 1 ! 2b cos l (48)

p 5 " ! 2b sin l (49)

As with the two-branch circuit, we now make the following assumption:
(PA3b) The parameter ! 2b, which plays the role of a coupling constant,

is characteristic of and unique to the junction, for example, ! 2b could depend

on the geometry of the junction and in particular ! 2b should be independent

of l .
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It follows that the other parameter a is dependent on l , i.e., a 5
2 ! 2b cos l . Equation (48) then gives the Josephson equation, as it is

equivalent to

j 5 j0sin l (50)

where

j 5 j (3)
l p 5

q

m
p, j0 5

q

m
" ! 2b . 0 on assuming b . 0 (51)

We can now identify j above with the established current I, and j0 with the

critical current. The critical current is seen to be characterisitc of the junction

and independent of l . The incoming current from B1 splits up equally and

flows into B2 and B3. Note that there is an enhancement of the critical current
by the factor ! 2.

2. The asymmetrical case with a 5 0. Here we can simply carry out

the correlations between PÃ(2)
l 2 and K (2)

a,b as for the two-branch circuit to obtain

the Josephson equation

j 5 j0sin l 2 (52)

where

j 5 j (3)
l 2p 5

q

m
p, j0 5

q

m
" b . 0 on assuming b . 0 (53)

The incoming current I in B1 goes straight through to B2 with no current

going into B3.

3. The other extreme case with a 5 1. The situation is the same except

with B2, B3 interchanged, i.e., the current flows in from B1 into B3 without

branching into B2.

However, this is not the end of the story. To complete the theory, a

superselection rule has to be introduced. In the two asymmetric cases, which

are essentially the same as two-branch circuits, we have already established

the necessary superselection rule (Wan and Fountain, 1996). We shall present

the analysis for the superselection rule for the symmetrical case in what
follows.

4.5. Superselection Rules for the Symmetrical Case

Recall that assumption (PA4) requires the current I to determine the

value of l so as to single out a current operator JÃ(3)
l . Since the value of l is

uniquely determined by j 5 I only over a range of p , assumption (PA4)

restricts l to the range [ 2 1±2 p , 0) ø (0, 1±2 p ], say. This restriction also helps
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to determine the value of a and hence the kinetic energy operator KÃ(3)
a,b. We

conclude that our physical system with a given Josephson junction and a

current I determines a pair a,b since:

1. b is a characteristic of the junction
2. l is fixed by I 5 j 5 j0sin l
3. a is fixed by a 5 2 ! 2b cos l

It follows that our system determines a unique momentum PÃ(3)
l , a unique

supercurrent JÃ(3)
l , and a unique kinetic energy operator KÃ(3)

a,b.

The analysis set out for the two-branch circuit (Wan and Fountain, 1996)

and for the one-branch circuit discussed in the preceding section which

establishes a superselection rule applies here. The result is the same as before

in that a continuous superselection rule exists parametrized by the current I.
This superselection rule again reduces each supersector to one dimension.

Consequently the appropriate supercurrent operator and the Hamiltonian are

the restrictions JÃ(3)
l and KÃ(3)

l to the corresponding one-dimensional subspaces.

To sum up, we now have three descriptions of the circuit, one symmetri-

cal and two asymmetrical. It may seem natural to assume that the former is
the correct description of the circuit. However, the analysis presented in the

next subsection reveals that this may not necessarily be the case.

4.6. Condensate in a Pure or in a Mixed State

An experiment to examine how a supercurrent fed into B1 will flow

down the circuit could have the following three possible results:

1. The current from B1 flows entirely into B2 with no current in B3.

This means that the condensate is in a pure state described by

w (3)
l 2p.

2. The current from B1 flows entirely into B3 with no current in B2.
This means that the condensate is in a pure state described by

w (3)
l 3p.

3. The current from B1 splits up and flows equally into B2 and B3 with

enhancement of the critical current as mentioned before.

The first two cases above are unambiguous. Suppose that an experiment

confirms case 3 above, namely that the current from B1 splits up and flows

equally into B2 and B3. The question now is whether we jump to the follow-

ing conclusions:

1. The states are pure corresponding to w (3)
l p with a superselection rule.

2. The supercurrent operator and the Hamiltonian of the system are

described by the restrictions of J (3)
l and *(3)

a,b onto the one-dimen-

sional supersectors defined by w (3)
l p .
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In a previous paper (Wan and Fountain, 1996) it is argued that we should

not jump to the above conclusions. Instead the state should really be a mixture

of w (3)
l 2p and w (3)

l 3p rather then the pure state w (3)
l p . In other words, the condensate

consists of a mixture of two parts; one part corresponds to w (3)
l 2p and the other

part corresponds to w (3)
l 3p. This conclusion is motivated by physical considera-

tions, details of which are given in Wan and Fountain (1996). A mixture of

w (3)
l 2p and w (3)

l 3p means that the incoming current in B1 consists of two components

with one component flowing into B2 and the other component flowing into

B3. In other words, the Cooper pairs in B1 are divided into two groups
described separately by w (3)

l 2p and w (3)
l 3p; each group forms a current component.

The two components never meet up again to form an interference circuit.

Because of the intrinsic global nature of the condensate in dc effects the kind

of delay-choice experiments described in Wheeler and Zurek (1983) are not

appropriate here. It follows that the current in B1 splitting up into B2 and B3

is not accompanied by each Cooper pair having to ª split upº into B2 and B3.
If each Cooper pair were to split up and then never meet up again we would

be confronted with a de Broglie-type paradox (Selleri and Tarozzi, 1981;

Wan and McLean, 1984), namely we are faced with the problem of not

knowing what happens to the electron pair after the splitting, e.g., in which

branch the electrons are and so on. The situation would be quite different if
B2 and B3 were to meet up to form an interference circuit (Wan and Fountain,

1996; Wollman et al., 1993; Harrison and Wan, 1997).

Finally our model of the three-branch circuit offers a chance to test by

experiment whether the condensate is in a pure state or in a mixed state.

According to the argument just presented, a confirmation of current spliting

into B2 and B3 would contradict the above statement. If the condensate is
necessarily in a pure state, then an experiment should confirm the counterintu-

itive result that current from B1 flows entirely into either B2 or B3 without

splitting.

As far as an experimental test is concerned, it is probably easier to

employ the continuous Y-circuit below.

4.7. Continuous Y-Circuit

A simple but nontrivial configuration not included in the preceding

discussions is that of a Y-circuit where the three branches join up at the

branch point to eliminate the Josephson junction. For such a continuous

circuit configuration one may be tempted to adopt the seemingly natural

continuity conditions on the three branches, i.e., f 20 5 f 10 5 f 30. However,
these conditions are inappropriate since they contradict the general boundary

conditions given by equations (31) and (32) for maximal symmetric extensions

for the composite momentum operator. We shall again confine our attention

to three cases.
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1. Symmetrical case with boundary conditions a 5 2 2 1/2, l 2 5 l 3 for

the momentum operator. We assume continuity of the phase at the branch

point, i.e., l 2 5 l 3 5 0, to distinguish our present, continuous circuit from
the previous, discontinuous one. The resulting composite momentum, denoted

by PÃ(3)
l 5 0, admits eigenfunctions

w (3)
l 5 0, p 5 e i-px1 %

1

! 2
e i-px2 %

1

! 2
e i-px3 (54)

The supercurrent operator is JÃ(3)
l 5 0 5 (q /m) PÃ(3)

l 5 0.

To determine the kinetic energy, we impose a further boundary condition

(Appendix D):

F 810 5
1

! 2
( F 820 1 F 830) (55)

which, together with the condition

F 10 5
1

! 2
( F 20 1 F 30) (56)

already implied by the continuity of the phase at the branch point, determines

a kinetic energy operator KÃ(3)
l 5 0 admitting w (3)

l 5 0,p as an eigenfunction (Appen-

dix E).

We have an interesting situation where the wave function still suffers

a discontinuity at the branch point despite the continuity of the circuit at

the branch point. The incoming current in B1 splits up equally and flows
into B2 and B3.

2. Asymmetrical case with boundary conditions a 5 0, l 2 5 0. This

amounts to continuity between branches B1 and B2 while ignoring B3, i.e.,

f 10 5 f 20, f 30 5 0 (57)

The resulting composite momentum, denoted by PÃ(3)
l 2 5 0, is equal to pÃ% pÃ3,

where pÃis the usual momentum in L 2( R ) 5 *1 % *2. The momentum

PÃ(3)
l 2 5 0 admits eigenfunctions of the form

w (3)
l 2 5 0, p 5 ei-px1 % e i-px2 % O3 (58)

The supercurrent operator is JÃ(3)
l 2 5 0 5 (q /m) PÃ(3)

l 2 5 0. The kinetic energy can

easily be established. Let KÃ5 pÃ2/2m be the usual kinetic energy operator in

L 2( R ) 5 *1 % *2. Then we can take the composite kinetic energy as

KÃ(3)
l 2 5 0 5 KÃ% KÃ3, where KÃ3 5

1

2m
pÃ

²
3pÃ3 (59)
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Physically this describes an incoming current in B1 going straight through

to B2 with no current flowing into B3.

3. Asymmetric case with with the boundary conditions a 5 0, l 3 5 0.
Everything is the same as case except with B2 and B3 interchanged.

The problem of whether the condensate is in a pure or a mixed state

discussed in the preceding subsection applies here.

5. CONCLUDING REMARKS

It is now clear that our method of quantization by parts can be applied

to multibranch circuits. Examples which are seen to be easily soluble are a

four-branch circuit consisting of two leads connecting a thick superconducting

ring, a five-branch circuit consisting of two leads connecting a thick, supercon-

ducting ring interrupted by a Josephson junction (the so-called rf-SQUID

configuration), and a six-branch circuit consisting of two leads connecting a
thick, superconducting ring interrupted by two Josephson junctions (the so-

called dc-SQUID configuration). Work is in progress to investigate a series

of other circuit configurations.

APPENDIX A. KINETIC ENERGY OPERATOR FOR TSCR WITH A JJ

First, symmetry consideration apparently produces two possible
alternatives:

a Ä 5 d a , b Ä 5 d 8 b or a Ä 5 d b , b Ä 5 d 8 a for some d , d 8 P C

Consider the first alternative. Setting the proportionality constants to 1, we get

a 82 5 2 a 81 , a 2 5 a + and b 82 5 2 b 81 , b 2 5 b + (60)

Using equations (60), we can write conditions (BC1) as

a 82 ( f 82 1 f 81 ) 5 a 2 ( f 2 2 f +) (61)

b 82 ( f 82 1 f 81 ) 5 b 2 ( f 2 2 f +) (62)

Þ
a 82

b 82
5

a 2

b 2
(63)

This result is insufficient to contradict (C1). However, using equation (60)

again, we can write conditions (BC1) as

a 81 ( f 81 1 f 82 ) 5 a 2 ( f + 2 f 2 ) (64)

b 81 ( f 81 1 f 82 ) 5 b 2 ( f + 2 f 2 ) (65)

Þ
a 81

b 81
5

a 2

b 2
(66)
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We can continue this process until we have gone through all the combinations.

As a result of this, (C1) is contradicted.

Intuitively one can easily check that many of the above equations are
immediately contradicted by the best-known self-adjoint extension, i.e., the

extension defined by the periodic boundary conditions f 2 5 f +, f 82 5
f 81 . We conclude that the second alternative is the correct one.

Now, we can divide the second alternative into a number of scenarios:

1. Scenario 1 with none of the parameters vanishing.

(a) Case 1 with a 82
2 2 a 82

1 Þ 0. The boundary conditions (20) and (21)
can again be written in the form of (BC2) with

a 5
a + a 81 1 a 2 a 82

a 82
2 2 a 82

1
, b 5 2

a + a 82 1 a 81 a 2

a 82
2 2 a 82

1
(67)

Conditions (C2) imply that a, b are real.

(b) Case 2 with a 82
2 2 a 82

1 5 0. When a 82 5 a 81 conditions (20) and

(21) reduce to f 2 5 f +, which would correlate with pÃl , l 5 0, and should

be rejected. When a 82 5 a 81 conditions (20) and (21) reduce to f 2 5 2 f +;

this seems to correlate with pÃl , l 5 p . But substituting this into (BC1), we
get f 82 5 2 f 81 , which is violated by the eigenfunctions of pÃl 5 p . This incon-

sistency is ground for rejection of pÃl 5 p , and hence this case with a 82
2 2

a 82
1 5 0.

2. Scenario 2 with one of the parameters vanishing.

(a) Case 1 with a 81 5 0, a 82 5 1, a 2 5 a P R , a + 5 2 b P R . This

reduces the boundary conditions (20) and (21) to the form of (BC2)

f 82 5 a f 2 1 b f +, f 81 5 2 a f + 2 b f 2 , a, b P R (68)

(b) Case 2 with a 82 5 0, a 81 5 1, a 2 5 b P R , a + 5 2 a P R . This

also reduces the boundary conditions (20) and (21) to the form of (BC2)

f 82 5 a f 2 1 b f +, f 81 5 2 a f + 2 b f 2 , a, b P R (69)

(c) Case 3 with a 2 5 0, a + 5 1. Condition (C2) implies that a 81 , a 82
are real and the boundary conditions (20) and (21) reduce to

f 2 5 a 82 f 82 2 a 81 f 81 (70)

f + 5 2 a 81 f 82 2 a 82 f 81 (71)

which can again be reduced to the form of (BC2) with

a 5
2 a 81

a 82
1 2 a 82

2
, b 5

a 82

a 82
1 2 a 82

2
(72)
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Both a and b are real.

(d) Case 4 with a + 5 0, a 2 5 1. Condition (C2) implies that a 81 , a 82
are real and the boundary conditions (20) and (21) reduce to

f 2 5 a 82 f 82 2 a 81 f 81 (73)

f + 5 2 a 81 f 82 2 a 82 f 81 (74)

which can be reduced to the form of (BC2) with

a 5
2 a 81

a 82
1 2 a 82

2
, b 5

a 82

a 82
1 2 a 82

2
(75)

Both a and b are real.

3. Scenario 3 with two of the parameters vanishing.

(a) Case 1 with a 2 5 a 82 5 0 or a + 5 a 81 5 0. With a 2 5 a 82 5 0

conditions (20) and (21) reduce to what are known as separated conditions

(Hudson and Pym, 1980):

a 81 f 81 2 a + f + 5 0, a 81 f 82 1 a + f 2 5 0 (76)

which are violated by the eigenfunctions of pÃl , and hence rejected. The same

applies with a + 5 a 81 5 0.

(b) Case 2 with a 2 5 a + 5 0 or a 81 5 a 82 5 0. With a 2 5 a + 5 0
conditions (20) and (21) reduce to ( f 82 )2 5 ( f 81 )2, which is violated by the

eigenfunctions of pÃl , l Þ 0, p , and hence rejected. With a 81 5 a 82 5 0 we

obtain ( f 2 )2 5 ( f +)
2, which should be rejected for the same reason.

(c) Case 3 with a 2 5 a 81 5 0 or a + 5 a 2 5 0. With a 2 5 a 81 5 0 we

get f 2 f 82 5 2 f + f 81 , which is violated by the eigenfunctions of pÃl , l Þ 0,

p , and hence rejected. The same applies if a + 5 a 2 5 0.
4. Scenario 4 with three of the parameters vanishing. Conditions (20)

and (21) would lead the vanishing of f and f 8 at the junction, and should

hence be rejected.

APPENDIX B. MOMENTUM OPERATORS FOR THE THREE-
BRANCH CIRCUIT

The adjoint of PÃ(3)
0 in *(3) is

PÃ(3)²
0 5 pÃ²1 % pÃ²2 % pÃ²3 (77)

The domain of the adjoint operator is

$(PÃ(3)²
0 ) 5 { f 5 f 1 % f 2 % f 3 P *(3): f l P AC(Bl), d f l/dxl P *l}

(78)
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where AC(Bl) is the set of absolutely continuous functions on Bl. The

deficiency spaces of PÃ(3)
0 are

1 6 5 { f P $(PÃ(3)²
0 ): (PÃ(3)²

0 7 i) f 5 0} (79)

1 2 is one-dimensional and is spanned by an orthonormal basis consisting

of the following element:

f 2 5 e x1 % 0 % 0, x1 P ( 2 ` , 0) (80)

1+ is two-dimensional and is spanned by the orthonormal basis

g2 5 0 % e 2 x2 % 0, g3 5 0 % 0 % e 2 x3, x2, x3 P (0, ` ) (81)

According to the second von Neumann formula (Weidman, 1980) an
operator PÃ(3) in *(3) is a closed symmetric extension of PÃ(3)

0 if and only if

there are closed subspaces ^+ of 1+ and ^ 2 of 1 2 and an isometric mapping

VÃof ^+ onto ^ 2 such that

$(PÃ(3)) 5 { f P $(PÃ(3)
0 )} 1 {g+ 1 VÃg+: g+ P F+} (82)

and

PÃ(3)( f 1 g+ 1 VÃg+) 5 PÃ(3)
0 f 1 ig+ 2 i VÃg+ (83)

Clearly ^ 2 5 1 2 and it follows that all closed symmetric extensions

of PÃ(3)
0 are maximal symmetric.
Now, ^+ must be one-dimensional and every one-dimensional closed

subspace of 1+ is spanned by a normalized function of the form

g+ 5 ! 1 2 a 2 e i l 8
2 g2 1 a e i l 8

3 g3 (84)

5 0 % ! 1 2 a 2e i l 82 e 2 x2 % a e i l 8
3 e 2 x3, (85)

a P [0, 1]; l 82, l 83 P ( 2 p , p ]

Hence all relevant isometric mappings from ^+ onto ^ 2 are given by

VÃg+ 5 e i u f 2 , u P ( 2 p , p ] (86)

It follows that the domain of PÃ(3) must consist of functions of the form

F 5 f 1 g+ 1 VÃg+ 5 f 1 c+(g+ 1 e i u f 2 ), c+ P C (87)

5 f 1 c+(e
i u e x1 % ! 1 2 a 2e i l 8

2 e 2 x2 % a e i l 83 e 2 x3) (88)

Observe that F is of the form F 5 F 1 % F 2 % F 3, where

F 1 5 f 1 1 c+e i u e x1

F 2 5 f 2 1 c+ ! 1 2 a 2 e i l 8
2 e 2 x2 (89)

F 3 5 f 3 1 c+ a ei l 8
3 e 2 x3
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These give rise to the following boundary conditions:

F 20 5 ! 1 2 a 2 e i l 2 F 10,

F 30 5 a ei l 3 F 10, where l 2, l 2 P ( 2 p , p ] (90)

In other words we have boundary conditions specified by three real parameters

F 20 5 ! 1 2 a 2 e i l 2 F 10 (91)

F 30 5 a e i l 3 F 10 (92)

The generalized eigenfunctions are of the form

w (3)
p a l 2 l 3 5 e ipx1 % ! 1 2 a 2 e i l 2 e ipx2 % a e i l 3ei-px3, a P ( 2 p , p ] (93)

with generalized eigenvalues p. These functions for each chosen set of values

of a , l 2, l 3 do not form a complete set in *(3). They are orthogonal, namely

^ w (3)
p a l 2 l 3 | w

(3)
p8 a l 2 l 3 & 5 2 p " d ( p 2 p8) (94)

where

^ w (3)
p a l 2 l 3 | w

(3)
p8 a l 2 l 3 & 5 #

0

2 `

(e ipx1)* (e ip8x1) dx1 (95)

1 #
`

0

( ! 1 2 a 2 e i l 2e ipx2)* (96)

( ! 1 2 a 2e i l 2e ip8x2) dx2 (97)

1 #
`

0

( a e i l 3e ipx3)* ( a e i l 3e ip8x3) dx3

When integrating in p we get

#
`

2 `

(e ipx1)* (e ipx8
1) dp (98)

1 #
`

2 `

( ! 1 2 a 2 e i l 2e ipx2)* ( ! 1 2 a 2 e i l 2e ipx8
2) dp (99)

1 #
`

2 `

( a e i l 3 e ipx3)* ( a e i l 3e ipx8
3) dp

5 2 p " ( d (x1 2 x 81) 1 (1 2 a 2) d (x2 2 x 82) 1 a 2 d (x3 2 x 83)) (100)

showing that these functions do not form a complete set on account of factors
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in a . To be complete in *(3), a set of functions has to be complete in *1,

*2, and *3. This is as expected for a maximal symmetric operator. For the

extreme cases a 5 0 and a 5 1, the set { w (3)
p a l 2 l 3} can be said to be complete

in *1 % *2 and *1 % *3, respectively. Clearly there are too many possible

momentum operators. We have to proceed to the correlations stage in order

to be in a position to make a choice. In other words, we have to quantize

other related observables first and try to build up a correlation. As will be

seen later, this correlation enables us to establish a choice of momentum

operator. In the present case the other two cognate observables are the super-
current and the kinetic energy.

APPENDIX C. EIGENFUNCTIONS OF MAXIMAL
SYMMETRIC OPERATORS

The incompleteness of the eigenfunctions of a maximal symmetric opera-

tor which is not self-adjoint can be seen more clearly in the following example.

Consider a momentum operator pÃl for the interval (0, 2 p ) and the momentum
operator pÃ+ for the half-line R +. Here pÃl is self-adjoint in L 2(0, 2 p ) with

eigenfunctions c l ,n, and pÃ+ is maximal symmetric in L 2 ( R +). The operator

pÃl % pÃ+ in L 2(0, 2 p ) % L 2( R +) is maximal symmetric, but not self-adjoint.

The eigenfunctions of pÃl % pÃ+ are of the form c l ,n % 0, which clearly form

an orthogonal and incomplete set in L 2 (0, 2 p ) % L 2( R +). This has immediate

physical implications, as seen in the discussion for the three-branch circuit.

APPENDIX D. KINETIC ENERGY OPERATORS FOR THE
THREE-BRANCH CIRCUIT

The partially quantized operators possess self-adjoint extensions. For

example, KÃ30 in *3 is known to have a one-parameter family of self-adjoint

extensions (Reed and Simon, 1975). An obvious self-adjoint extension is

KÃ3 5 (1/2m) pÃ²3pÃ3 since this is compatible with pÃ3 in that the domains $(KÃ3)
and $( pÃ3) both consist of functions vanishing at the origin.

For composite quantization consider the direct sum

KÃ(3)
0 5 KÃ01 % KÃ02 % KÃ03 defined on

$(KÃ(3)
0 ) 5 $(KÃ01) % $(KÃ02) % $(KÃ03) (101)

D1. The Neumann Formula

Let D (3)
0 be the closure of (2m / " 2) KÃ(3)

0 ; then we have D (3)
0 5

D 2
01 % D 1

02 % D 1
03, where D 2

01, D 1
02, and D 1

03 are the closures of (2m /" 2)KÃ201,
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(2m / " 2)KÃ102, and (2m / " 2)KÃ103, respectively. Let 1+, 1 2 be the deficiency

subspaces of D (3)
0 , i.e.,

1+ 5 { f P *(3):( D (3)²
0 2 i) f 5 0}, 1 2 5 { f P *(3): ( D (3)²

0 1 i) f 5 0}

If D (3)
s denotes a self-adjoint extension of D (3)

0 , then, by the second von

Neumann formula (Weidman, 1980; Blank et al., 1994), the domain of

D (3)
s is

$( D (3)
s ) 5 $( D (3)

0 ) 1 { w 1 VÃw : w P 1 1 } (102)

where VÃis a unitary mapping of 1+ onto 1 2 , and on $( D (3)
s ) we have

D (3)
s F 5 D (3)

0 f 1 i w 2 iVÃw , F 5 f 1 w 1 VÃw P $( D (3)
s )

(103)

The deficiency spaces of KÃ(3)
0 are

1 6 5 { f P $(PÃ(3)²
0 ): (KÃ(3) ²

0 7 i) f 5 0} (104)

1 2 is three-dimensional and is spanned by an orthonormal basis consisting

of the following elements

f1 5 ce r *x1 % O2 % O3, c 5 21/4, r 5 e 2 i p /4 (105)

f2 5 O1 % ce 2 r *x2 % O3 (106)

f3 5 O1 % O2 % ce 2 r *x3 (107)

1+ is three-dimensional and is spanned by the orthonormal basis

g1 5 ce r x1 % O2 % O3 (108)

g2 5 O1 % ce 2 r x2 % O3 (109)

g3 5 O1 % O2 % ce 2 r x3 (110)

Let

w 5 o
k

ckgk , VÃgk 5 o
j

ujkfj , where j, k 5 1, 2, 3

Note that r 5 (1 2 i)/ ! 2 and r * r 5 1, r 2 5 2 õ Â, r *2 5 i. Then

F 5 f 1 o
k

ck 1 gk 1 o
j

ujkfj 2 , f P $( D (3)
0 ) (111)

The 3 3 3 unitary matrix (ujk) means that we have a nine-parameter family

of self-adjoint extensions.



Quantization by Parts and Quantum Circuits 2183

D2. Permutation Invariant with Respect to B2, B3

Let us consider extension operators with domains containing functions

F 5 F 1 % F 2 % F 3 all satisfying the following three boundary conditions

at the junction xi 5 0:

F 30 5 F 20 (112)

F 810 5 a F 10 1 b ( F 20 1 F 30) (113)

F 820 1 F 830 5 2 a ( F 20 1 F 30) 2 b2 F 10 (114)

where the prime indicates a derivative with respect to an appropriate position

variable xi and subscript 0 signifies the value taken at the junction xi 5 0.

The first boundary condition imposes the following relations between the

matrix elements:

u12 5 u13, u21 5 u31, u22 5 u33, u23 5 u32 5 1 1 u22 (115)

These relations in turn give rise to the following expressions for the boundary

values of the wave function and its derivatives:

F 10 5 c1(1 1 u11) 1 (c2 1 c3)u12 (116)

F 20 5 c1u21 1 (c2 1 c3)(1 1 u22) (117)

F 30 5 F 20 (118)

F 810 5 c1( r 1 r *u11) 1 (c2 1 c3) r *u12 (119)

F 820 5 c1( 2 r *u21) 2 c2( r 1 r *u22) 2 c3 r *(1 1 u22) (120)

F 830 5 c1( 2 r *u21) 2 c2 r *(1 1 u22) 2 c3( r 1 r *u22) (121)

Note that F 830 5 F 820 only when c2 5 c3.

Next, the second and the third boundary conditions together with the

above explicit expressions from the von Neumann formula give

r 1 r *u11 5 a (1 1 u11) 1 b2u21 (122)

r *u12 5 au12 1 b2(1 1 u22) (123)

r *u21 5 au21 1 b (1 1 u11) (124)

r 1 r *(1 1 2u22) 5 a2(1 1 u22) 1 b2u12 (125)

These equations are consistent if the matrix elements are suitably related.

Let us assume that the matrix elements are related by

u12 5 u21, 1 1 u11 5 2(1 1 u22) (126)
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This is equivalent to the requirement that equations (122) and (125) are the

same and equations (123) and (124) are the same. Then the above four

equations are reduced to two

r 1 r *u11 5 a (1 1 u11) 1 b2u12 (127)

r *u12 5 au12 1 b (1 1 u11) (128)

leading to the following explicit relations:

u11 5 2
2 1 1 ! 2a 2 a 2 1 2b 2

i 2 2a r * 1 a 2 2 2b 2 (129)

u12 5
b

( r * 2 a)

i (1 2 ! 2a) 2 1

(i 2 2a r * 1 a 2 2 2b 2)
(130)

a 5 r * 2
i ! 2(1 1 u11)

(1 1 u11)
2 2 2u 2

12

(131)

b 5
i ! 2u12

(1 1 u11)
2 2 2u 2

12

(132)

It follows that a, b determine a matrix (ujk) and vice versa. To sum up we have:

1. The matrix (ujk) of the form

1 1 1 2u v v

v u 1 1 u

v 1 1 u u 2 (133)

which can be shown to be unitary if the complex numbers u, v satisfy

u 1 u* 1 2 | u | 2 1 | v | 2 5 0 (134)

v 1 v* 1 2u*v 1 2v*u 5 0 (135)

2. The matrix (ujk) is determined by two independent real parameters

a, b. Moreover, a, b determines a self-adjoint extension D (3)
s provided the

matrix (ujk) is unitary.

APPENDIX E. CONTINUOUS Y-CIRCUIT

First the general momentum boundary conditions with a 5
1/ ! 2, l 2 5 l 3 5 0 imply

F 10 5
1

! 2
( F 20 1 F 30) (136)
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For the composite kinetic energy we impose a further boundary condition

F 810 5
1

! 2
( F 820 1 F 830) (137)

Substitute these equations into the expressions obtained from the von Neu-
mann formula to get

1 1 u11 5 ! 2u12 (138)

2 i 1 u11 5 2 ! 2u12 (139)

These matrix elements correspond to

u 5
1

4
(i 2 3), v 5

1

2 ! 2
(i 2 1) (140)

The unitary conditions for the matrix are easily verified.
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